A Gentle Introduction to Generative AI (including NLP)

Centre for Artificial Intelligence (CAI) Faculty of Engineering and Information Sciences (EIS)

UNIVERSITY OF WOLLONGONG AUSTRALIA Dr Jack Yang Web: https://uow.info/cai Email: cai-admin@uow.edu.au

Centre for Artificial Intelligence (CAI)

Faculty of Engineering and Information Sciences

Staff

- 3 Professors, 1 Associate Professor, 1 MCR and 1 ECR
- 1 Honorary Professor
- 3 Postdocs & RA

Research Students

• 25 (PhD, MPhil and MSc)

Outline

- Generative AI (GAI)
- Language Modelling
- Prompt engineering

Generative Artificial Intelligence (GAI) Definition

Generative AI is a type of artificial intelligence technology that broadly describes machine learning systems capable of **generating text, images, code or other types of content**, often in response to a **prompt** entered by a user.

Predictive/Descriptive AI vs Generative AI (GAI)

Predictive/Descriptive AI:

• Predict future data and identify patterns

Predictive/Generative AI

• Generate content or data

How GAI Works ?

Training, prompt and inference (generation)

How GAI Works?

• From prompt to output

Applications

- Personal Assistant
- Auditor
- Advisor
- Designer
- Software Engineer
- Game Creators
- Artist
- Painter
- Tutor
- Writer

...

• "Live" Encyclopedia

Image Generation and Editing DALL-E, Midjourney & Stable Diffusion

Prompt: Vibrant California poppies

DALL-E

Midjourney

DALL-E

Image editing

Music/Audio Generation

Google's MusicLM

"Meditative song, calming and soothing, with flutes and guitars. The music is slow, with a focus on creating a sense of peace and tranquility."

"jazz with saxophone"

Sora

Create realistic and imaginative scenes (Video)

https://twitter.com/i/status/1758192957386342435

Text Generation

ChatGPT

- Answering Questions: I can provide answers on a broad range of topics, from science and history to technology and pop culture.
- **Tutoring:** I can help explain complex concepts in subjects like mathematics, physics, literature, and more.
- **Programming Help:** I can help debug code, provide code examples, and explain programming concepts.
- **Recommendations:** I can suggest books, movies, music, etc., based on your preferences.
- Writing Assistance: I can help you draft, edit, or proofread essays, stories, emails, and more.
- **Translation:** I can translate sentences or short paragraphs across various languages.

- **Conversations:** I can engage in general chat or help talk through complex ideas.
- Tasks Involving Logic: I can solve puzzles, math problems, and logic games.
- Image Analysis: With my new image input capabilities, I can analyze and describe images, though my capabilities in this regard are basic.
- Guidance on Various Topics: From cooking recipes to DIY instructions, fitness advice, or travel suggestions.
- Simulation of Characters: I can simulate dialogues from fictional or historical characters based on available knowledge.
- Meditation and Relaxation: I can guide you through breathing exercises or provide calming narrations.

How GAI Works?

Three requirements and common architectures

Normalizing Flows

How AGI Works

Diffusion Models

Generative reverse denoising process

How AGI Works

Variational autoencoders (VAEs)

Encoder

▶ µ₁, σ₁

Latent space

Decoder

z₁

How GAI Works?

Generative Adversarial Networks (GANs)

How GAI Works

Transformer - Most common encoder/decoder architecture

Two mechanisms : self-attention and positional encodings (more later)

Language Modelling

UNIVERSITY OF WOLLONGONG AUSTRALIA

ChatGPT – GAI

A milestone in NLP !

Released

• 30 Nov 2022

One million users

- ChatGPT 5 days
- Instagram 2.5 months
- Spotify 5 months
- Facebook 10 months
- Netflix 3.5 years

Roughly 1.5 billion people are using chatbots,

ChatGPT

Expert's Opinion

Yann LeCun @ylecun

My unwavering opinion on current (auto-regressive) LLMs
1. They are useful as writing aids.
2. They are "reactive" & don't plan nor reason.
3. They make stuff up or retrieve stuff approximately.
4. That can be mitigated but not fixed by human feedback.
5. Better systems will come

9:02 pm · 13 Feb 2023 · 386.6K Views

375 Retweets 57 Quote Tweets 2,213 Likes

Workflow

Tokenization

• To break text down into a smaller units (e.g. words, sentences). Each of the smaller unit is called tokens

• The tokens could be words, numbers or punctuation marks. In tokenization, smaller units are created by locating word boundaries.

Stop word removal

- The words which are generally filtered out before processing a text are called "**stop words**".
- These are actually the most common words in any language (like articles, prepositions, pronouns, conjunctions, etc) and does not add much information to the text.

o Examples: "the", "a", "an", "so", "what"

• Definition of stop words is application dependent

Stemming & Lemmatization

• The goal of both stemming and lemmatization is to reduce inflectional forms and sometimes derivationally related forms of a word to a common base form.

car, cars, car's, cars' 🗲 car

am, are, is \rightarrow be;

- Stemming is the process of reducing words to their word stem. A "stem" is the part of a word that remains after the removal of all affixes.
 the stem for the words "touched", "touch." and "touching" is "touch".
- Lemmatization is the process to return to the base or dictionary form of a word, which is known as "lemma"

Preprocessing

Part of the speech (POS) tagging & Parsing

- POS is to categorize words/phrases in a text (corpus) in correspondence with a particular part of speech, depending on the definition of the word and its context.
- Parsing Formal analysis of a sentence into its constituents, which results in a parse tree showing their syntactic relation to one another in visual form

Language Modeling What is it?

- Language Modeling (LM) is the development of probabilistic models that are able to predict the next word in the sequence given the words that precede it.
- LM learns the probability of <u>word</u> <u>occurrence</u> based on examples of text. *Simpler models may look at a context of a short sequence of words, whereas larger models may work at the level of sentences or paragraphs.*

Language Modeling Statistical language models (SLM)

Markov Chains

$$\Pr(X_{n+1} = x \mid X_n = x_n)$$

Example: "the quick brown fox jumps over the lazy dog"

Language Modeling

Statistical language models (SLM)

This is Big Data Al Book

Uni-Gram	This	ls	Big	Data			AI	Book	
Bi-Gram	This is	Is Big	Big Data		Data Al		Al Book		
Tri-Gram	This is Big	Is Big Data		Big Data	AI	Data A	Al Book		

Language Modeling

Neural Language Models (NLM)

- Make use of Neural networks.
 - Most popular one is "Transformer"

Language Modeling

Neural Language Models - Transformer

- Self-attention: assigns a weight (importance) to one part of an input against the rest of the input
- Positional encoding: the order in which input words occur.

Output

Probabilities

Softmax

Linear

Add & Norm

Word Embeddings

Language Modeling(word/context) = Word Embeddings

• A word embedding is a representation of a word, typically consisting of a real-valued vector that encodes the meaning of the word in such a way that words that are closer in the vector space are expected to be similar in meaning.

BERT - Bidirectional Encoder Representation from Transformers

Problems to Solve

- Neural Machine Translation
- Question Answering
- Sentiment Analysis
- Text summarization

Needs Language understanding

How to solve Problems (BERT Training)

- Pretrain BERT to understand langauge
- Fine tune BERT to learn specific task

BERT - Bidirectional Encoder Representation from Transformers

Pretraining : "What is the language? What is the context?"

BERT - Bidirectional Encoder Representation from Transformers

Fine Tuning : "What to use language for specific task?"

BERT - Bidirectional Encoder Representation from Transformers

	BERT	RoBERTa	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base : ~110 Large : ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base : 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base : 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.
Method	BERT (Bidirectional Transformer with MLM and NSP)	BERT without NSP**	BERT Distillation	Bidirectional Transformer with Permutation based modeling

GPT - Generative Pretrained Transformer

A process of generating text with the goal of appearing indistinguishable to human-written text

ChatGPT broke the Turing test – the race is on for new ways to assess AI (Nature, 25 July 2023)

Text generation

common strategies: statistical correlations between words

Randomly Sampling

Greedy Decoding

Text generation

common strategies: statistical correlations between words

Top-p or Nucleus Sampling (threshold)

Top-k Sampling (random)

Prompt Engineering

UNIVERSITY OF WOLLONGONG AUSTRALIA

Prompt Engineering

Design and optimize prompts for LM, such as the GPT or Llama, to <u>generate</u> <u>the specific output</u> required by the user.

- Prompts can be questions, commands, statements even token or parameters
- Possible to solve problems <u>without directly re-training data</u>.

Data Driven Method

• automatically optimize the prompt through the data learning process or fine-tune the model

Hand-made, predefined text (templates)

Techniques:

- Specific and clear instructions
 - Structured input or output
 - Set condition boundary
 - Few-shot example
- Let the model think
 - Chain-of-thought (Zero-shot or Few-shot CoT)
- Function call
 - Call external function or API
- Iterative Prompt
 - Iterative trial and error and experimentation to get a prompt that is appropriate for each domain and task

 To categorize movie reviews, the prompt could be: "Was this movie reviewed positively or negatively?" + [Text of film review].

Six elements

- 1. Task (generate, drive, write, analyse)
- 2. Context (background)
- 3. Examples
- 4. Roles (similar to human experience)
- 5. Format
- 6. Tone

A: The answer is 27. X

Example of CoT

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Function call

Iterative Prompt

Big to small chunks

Question: It takes Amy 4 minutes to climb to the top of a slide. It takes her 1 minute to slide down. The water slide closes in 15 minutes. How many times can she slide before it closes? <LM>

Answer: To solve "How many times can she slide before it closes?", we need to first solve:

"How long does each trip take?"

</LM>

Prompt 0

Prompt 1

It takes Amy 4 minutes to climb to the top of a slide. It takes her 1 minute to slide down. The water slide closes in 15 minutes.

Subquestion 1: How long does each trip take?

<LM>

Answer 1: It takes Amy 4 minutes to climb and 1 minute to slide down. 4 + 1 = 5. So each trip takes 5 minutes.

</LM>

Prompt 2

It takes Amy 4 minutes to climb to the top of a slide. It takes her 1 minute to slide down. The slide closes in 15 minutes.

Subquestion 1: How long does each trip take?

Answer 1: It takes Amy 4 minutes to climb and 1 minute to slide down. 4 + 1 = 5. So each trip takes 5 minutes.

Subquestion 2: How many times can she slide before it closes?

<LM>

Answer 2: The water slide closes in 15 minutes. Each trip takes 5 minutes. So Amy can slide $15 \div 5 = 3$ times before it closes.

</LM>

Data driven method

Prompt learning

- Emphasis on automatic discovery or optimization of the most effective prompts through the learning process.
 - For example, automatic generation of efficient prompts for domain-specific questions improves the accuracy of question answering systems.

Prompt tuning

- Adjust a few parameters of the model to better respond to a given prompt
 - For example, fine-tuning the model to fit specific types of sentiment analysis tasks and improving the model's ability to recognize emotions through precise adjustments.

Process:

(1) Ask the model to generate a candidate set of prompts(2) Filter the candidate set based on a selected scoring function

$$ho^* = rg\max_{
ho} \mathbb{E}_{(x,y) \in \mathcal{D}_{ ext{train}}}[f(
ho,x,y)]$$

APE: Larger Language models are human-level prompt engineers

Conclusion

Promising outcomes and Challenges

Promising outcomes

- Neural language models enabling many applications
 - ✓ BERT and its variants (Google)
 - ✓ GPT-x and its fine-tuned model, e.g. ChatGPT (OpenAI)
- Turning language computable
 - ✓ Inference via contemporary ML and DL
 - ✓ Fusion of different types of information
- 77% of Businesses Using NLP Expect to Increase Investment (recent survey)

Some Challenges

- Ambiguity
- Context dependence
- Out-of-Vocabulary words
- Annotation bias
- Multi-lingual NLP
- Large number of parameters of LMs
- 67% of businesses with NLP models in production for 5+ years still deal with accuracy challenges (recent survey)

Thank you!

UNIVERSITY OF WOLLONGONG AUSTRALIA

