
A Gentle Introduction to Deep Learning

Center for AI - Faculty of Engineering and Information Sciences

Part of the content is referred to Stanford AI Subject

A brief history

• 1943: neural networks ⇔ logical circuits (McCulloch/Pitts)

• 1949: ”cells that fire together wire together” learning rule (Hebb)

• 1969: theoretical limitations of neural networks (Minsky/Papert)

• 1974: backpropagation for training multi-layer networks (Werbos)

• 1986: popularization of backpropagation (Rumelhardt, Hinton, Williams)

2

Figure from Models of Computation

A brief history

• 1980: Neocognitron, a.k.a. convolutional neural networks (Fukushima)

• 1989: backpropagation on convolutional neural networks (LeCun)

• 1990: recurrent neural networks (Elman)

• 1997: Long Short-Term Memory networks (Hochreiter/Schmidhuber)

• 2006: unsupervised layerwise training of deep networks (Hinton et al.)

What is deep learning?

A family of techniques for learning compositional vector representations of complex data.

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Review: linear predictors

x1

x2

x3

fθ(x)

w

Output:

fθ(x) = w · x

Parameters: θ = w

Review: neural networks

σ

σ

x1

x2

x3

h1

h2

V
w

fθ(x)

Intermediate hidden units:

hj(x) = σ(vj · x) σ(z) = (1 + e−z)−1

Output:

fθ(x) = w · h(x)

Parameters: θ = (V,w)

Depth
x

h h′ h′′ h′′′

fθ(x)

Intuitions:

• Hierarchical feature representations

• Can simulate a bounded computation logic circuit (original motivation from McCul-
loch/Pitts, 1943)

• Learn this computation (and potentially more because networks are real-valued)

• Depth k + 1 logic circuits can represent more than depth k (counting argument)

• Formal theory/understanding is still incomplete

What’s learned?
[figure from Honglak Lee]

Summary

• Deep networks learn hierarchical representations of data

• Train via SGD, use backpropagation to compute gradients

• Non-convex optimization, but works empirically given enough compute and data

Review: optimization

Regression:

Loss(x, y, θ) = (fθ(x)− y)2

Key idea: minimize training loss

TrainLoss(θ) =
1

|Dtrain|
∑

(x,y)∈Dtrain

Loss(x, y, θ)

min
θ∈Rd

TrainLoss(θ)

Algorithm: stochastic gradient descent

For t = 1, . . . , T :

For (x, y) ∈ Dtrain:

θ ← θ − ηt∇θLoss(x, y, θ)

Training

• Non-convex optimization

• No theoretical guarantees that it works

• Before 2000s, empirically very difficult to get working

What’s different today

Computation (time/memory) Information (data)

How to make it work

• More hidden units (over-provisioning)

• Adaptive step sizes (AdaGrad, ADAM)

• Dropout to guard against overfitting

• Careful initialization (pre-training)

• Batch normalization

• Model and optimization are tightly coupled

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Motivation

W

x

• Observation: images are not arbitrary vectors

• Goal: leverage spatial structure of images (translation invariance)

Idea: Convolutions

Prior knowledge

• Local connectivity: each hidden unit operates on a local image patch (3 instead of 7
connections per hidden unit)

• Parameter sharing: processing of each image patch is same (3 parameters instead of 3 ·5)

• Intuition: try to match a pattern in image

[figure from Andrej Karpathy]

Convolutional layers

• Instead of vector to vector, we do volume to volume

Max-pooling

• Intuition: test if there exists a pattern in neighborhood

• Reduce computation, prevent overfitting

[figure from Andrej Karpathy]

Example of function evaluation

AlexNet

• Non-linearity: use RelU (max(z, 0)) instead of logistic

• Data augmentation: translate, horizontal reflection, vary intensity, dropout (guard against
overfitting)

• Computation: parallelize across two GPUs (6 days)

• Results on ImageNet: 16.4% error (next best was 25.8%)

[Krizhevsky et al., 2012]

VGGNet

• Architecture: deeper but smaller filters; uniform

• Computation: 4 GPUs for 2-3 weeks

• Results on ImageNet: 7.3% error (AlexNet: 16.4%)

[Simoyan/Zisserman, 2014] [image credit: Davi Frossard]

Residual networks

x 7→ σ(Wx) + x

• Key idea: make it easy to learn the iden-
tity (good inductive bias)

• Enables training 152 layer networks

• Results on ImageNet: 3.6% error

[He et al. 2015]

Summary

• Key idea: locality of connections, capture spatial structure

• Filters have parameter sharing; most parameters in last fully connected layers

• Depth really matters

• Applications to text, Go, drug design, etc.

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Motivation: modeling sequences

Sentences:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Paris Talks Set Stage for Action as Risks to the Climate Rise

Time series:

Recurrent neural networks

Recurrent neural networks

x1 x2 x3 x4

h1 h2 h3 h4

h1 = Encode(x1)

x2 ∼ Decode(h1)

h2 = Encode(h1, x2)

x3 ∼ Decode(h2)

h3 = Encode(h2, x3)

x4 ∼ Decode(h3)

h4 = Encode(h3, x4)

Update context vector:

ht = Encode(ht−1, xt)

Predict next character:

xt+1 = Decode(ht)

context ht compresses x1, . . . xt

Simple recurrent network

x1 x2 x3 x4

h1 h2 h3 h4

Encode(ht−1, xt) = σ(

V ht−1

+

W
xt

) =

ht

Decode(ht) ∼ softmax(

W ′

ht

) =

p(xt+1)

[Elman, 1990]

Vanishing gradient problem

• RNNs can have long or short dependancies

• When there are long dependancies, gradients have trouble backpropagating through

Vanishing gradient problem

Long Short Term Memory (LSTM)

API:

(ht, ct) = LSTM(ht−1, ct−1, xt)

Input gate:

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

Forget gate (initialize with bf large, so close to 1):

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf)

Cell: additive combination of RNN update with previous cell

ct = it � tanh(Wcxt + Ucht−1 + bc) + ft � ct−1

Output gate:

ot = σ(Woxt + Uoht−1 + Voct + bo)

Hidden state:

ht = ot � tanh(ct)

[Schmidhuber & Hochreiter, 1997]

Compared with RNN, LSTM can handle the
information in memory for the long period of
time---remembering information for long
period of time.

Sequence-to-sequence model

Motivation: machine translation

x:Je crains l’homme de un seul livre.

y:Fear the man of one book.

y4 y5 y6

x1 x2 x3

h1 h2 h3

h4 h5 h6

Read in a sentence first, output according to RNN:

ht = Encode(ht−1, xt or yt−1), yt = Decode(ht)

[Sutskever et al., 2014]

Sequence-to-sequence models
are not a type of neural
network (like RNN or LSTM),
but rather a framework for
solving sequence transduction
problems by using RNN or
LSTM.

Attention-based models

Motivation: long sentences — compress to finite dimensional vector?

Eine Folge von Ereignissen bewirkte, dass aus Beethovens Studienreise nach Wien ein dauer-
hafter und endgültiger Aufenthalt wurde. Kurz nach Beethovens Ankunft, am 18. Dezem-
ber 1792, starb sein Vater. 1794 besetzten französische Truppen das Rheinland, und der
kurfürstliche Hof musste fliehen.

Key idea: attention

Learn to look back at your notes.

Attention-based models

y4 y5 y6

x1 x2 x3

h1 h2 h3

h4 h5 h6

Distribution over input positions:

αt = softmax([Attend(h1, ht−1), . . . ,Attend(hL, ht−1)])

Generate with attended input:

ht = Encode(ht−1, yt−1,
∑L

j=1 αthj)

Transformer models: attention only – no RNN!

[Bahdanau et al., 2015]

The Transformer model:
1. An encoder-decoder model
2. Uses self-attention
3. Parallel processing (Not sequential)
4. The "T" in ChatGPT

Machine translation
[Bahdanau et al., 2015]

Image captioning
[Xu et al., 2015]

Summary

• Recurrent neural networks: model sequences (non-linear version of Kalman filter or HMM)

• Logic intuition: learning a program with a for loop (reduce)

• LSTMs mitigate the vanishing gradient problem

• Attention-based models: when only part of input is relevant at a time

• Newer models with ”external memory”: memory networks, neural Turing machines

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Motivation

• Deep neural networks require lot of data

• Sometimes not very much labeled data, but plenty of unlabeled data (text, images, videos)

• Humans rarely get direct supervision; can learn from raw sensory information?

Autoencoders

Analogy:

A A A A B B B B B 4 A’s, 5 B’s A A A A B B B B B

Key idea: autoencoders

If we can compress a data point and still reconstruct it, then we have learned something
generally useful.

General framework:
x

Encode

h

Decode

x̂

minimize ‖x− x̂‖2

Principal component analysis

Input: points x1, . . . , xn

Encode(x) =

U>
x

Decode(h) =

U
h

(assume xi’s are mean zero and U is orthogonal)

PCA objective:

minimize
n∑

i=1

‖xi − Decode(Encode(xi))‖2

Autoencoders

Increase dimensionality of hidden dimension:

x

Encode

h

Decode

x̂

• Problem: learning nothing — just set Encode,Decode to identity function!

• Need to control complexity of Encode and Decode somehow...

Non-linear autoencoders

Non-linear transformation (e.g., logistic function):

Encode(x) = σ(Wx+ b)

Decode(h) = σ(W ′h+ b′)

W b
W ′ b′

Loss function:

minimize ‖x− Decode(Encode(x))‖2

Key: non-linearity makes life harder, prevents degeneracy

Denoising autoencoders
Corrupt(x)

Encode

h

Decode

x̂

Types of noise:

• Blankout: Corrupt([1, 2, 3, 4]) = [0, 2, 3, 0]

• Gaussian: Corrupt([1, 2, 3, 4]) = [1.1, 1.9, 3.3, 4.2]

Objective:

minimize ‖x− Decode(Encode(Corrupt(x)))‖2

Algorithm: pick example, add fresh noise, SGD update

Key: noise makes life harder, prevents degeneracy

Denoising autoencoders

MNIST: 60,000 images of digits (784 dimensions)

200 learned filters (rows of W):

W

[Figure 7 of Vincent et al. (2010)]

Unsupervised pre-training

labeled unlabeled

BERT

Paris Talks Stage for as Risks to Climate Rise

Paris Talks Set Stage for Action as Risks to the Climate Rise

• Tasks: fill in words, predict whether is next sentence

• Trained on 3.3B words, 4 days on 64 TPUs

[Devlin+ 2018]

(Bidirectional Encoder Representations from Transformers, Google 2018)

Unsupervised learning

• Principle: make up prediction tasks (e.g., x given x or context)

• Hard task → pressure to learn something

• Loss minimzation using SGD

• Discriminatively fine tune: initialize feedforward neural network and backpropagate to
optimize task accuracy

• How far can one push this?

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Getting things to work

Better optimization algorithms: SGD, SGD+momentum, AdaGrad, AdaDelta, momentum,
Nesterov, Adam

Tricks: initialization, gradient clipping, batch normalization, dropout

More hyperparameter tuning: step sizes, architectures

Better hardware: GPUs, TPUs

...wait for a long time...

Theory: why does it work?

Two questions:

• Approximation: why are neural networks good hypothesis classes?

• Optimization: why can SGD optimize a high-dimensional non-convex problem?

Partial answers:

• 1-layer neural networks can approximate any continuous function on compact set [Cy-
benko, 1989; Barron, 1993]

• Generate random features works too [Rahimi/Recht, 2009; Andoni et. al, 2014]

• Use statistical physics to analyze loss surfaces [Choromanska et al., 2014]

Summary

Phenomena Ideas

Fixed vectors

Spatial structure

Sequence

Sequence-to-sequence

Unsupervised

Feedforward NNs

convolutional NNs

recurrent NNs
LSTMs

encoder-decoder
attention-based models

autoencoders
any auxiliary task

Outlook

Extensibility: able to compose modules

LSTM Attend Encode

Learning programs: think about analogy with a computer

x fθ y

We cannot simply depend on GPU and data to achieve AGI.
 New science and technology are needed.

	deep-learning
	CAI_lecture_DL_applications

