A Gentle Introduction to Deep Learning

Center for Al - Faculty of Engineering and Information Sciences

Part of the content is referred to Stanford AI Subject

1943:

1949:

1969:

1974

1986:

A brlef hIStOry) " Staight-line

i % Funcl_ior?al program:

e description: (1 READ X)

— g, =x (2 READ ¥)

g T I‘-‘“’ 8 =) (3 not 1)

. . . . £ s rf:_x g; =g (4 wot 2)
neural networks < logical circuits (McCulloch/Pitts) RHF | aroe Gawls
5 Y o g =gng: (6 AND 3 2)

= Ey — &2 N B (7 or 5 6)
Fig.2.1 g7 &V Es (8 outrut 5)

(9 outpur 7)

" cells that fire together wire together” learning rule (Hebb) Figare rom Modelof Comptaton

theoretical limitations of neural networks (Minsky/Papert)

backpropagation for training multi-layer networks (Werbos)

popularization of backpropagation (Rumelhardt, Hinton, Williams)

A brief history

1980: Neocognitron, a.k.a. convolutional neural networks (Fukushima)
1989: backpropagation on convolutional neural networks (LeCun)
1990: recurrent neural networks (Elman)

1997: Long Short-Term Memory networks (Hochreiter/Schmidhuber)

2006: unsupervised layerwise training of deep networks (Hinton et al.)

What is deep learning?

A family of techniques for learning compositional vector representations of complex data.

000000
CICITITICIE)

CICITITICIE)
CICITITICIE)

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Review: linear predictors

508
W (\V)
=
=

Output:

Parameters: 0 = w

7 Review: neural networks

1 v hl W
X2 @\Q fo(x)
I3 h2

Intermediate hidden units:
hj(z) =o(vj-x) o(z)=1+e*)""
Output:
fo(x) = w - h(z)
Parameters: 8 = (V,w)

Depth
h// h///

h h'
0 O O 0 fo(x)
o o o o

e Hierarchical feature representations

@00009 =

Intuitions:

e Can simulate a bounded computation logic circuit (original motivation from McCul-
loch /Pitts, 1943)

e Learn this computation (and potentially more because networks are real-valued)
e Depth k + 1 logic circuits can represent more than depth k£ (counting argument)

e Formal theory/understanding is still incomplete

[figure from Honglak Lee]

What's learned?

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
ﬂEdgesﬂ

Pixels

7
o

Summary

Vg

e Deep networks learn hierarchical representations of data

e Train via SGD, use backpropagation to compute gradients

e Non-convex optimization, but works empirically given enough compute and data

Review: optimization

Regression:

Loss(z,y,0) = (fo(x) — y)?

1
—~@ Key idea: minimize training loss

TrainLoss(f) = ! Z Loss(x,y,0)

|Dtrain | (fU,y) GIl)train

min TrainLoss(#)
fcRd

— Algorithm: stochastic gradient descent

Fort=1,...,T:
For (xay) € Drrain:
0 < 60 —n.Vgloss(x,y,0)

Training

e Non-convex optimization
e No theoretical guarantees that it works

e Before 2000s, empirically very difficult to get working

What's different today

Computation (time/memory) Information (data)

How to make it work

More hidden units (over-provisioning)
Adaptive step sizes (AdaGrad, ADAM)
Dropout to guard against overfitting
Careful initialization (pre-training)

Batch normalization

Model and optimization are tightly coupled

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Motivation

8 000000000000000

Images are not arbitrary vectors

e Observation:

)

e Goal: leverage spatial structure of images (translation invariance

ldea: Convolutions

Filter

+k3i5 +/€4i6 +k3?;6 +k4i7 +k37;7+k4i8

k125+k226 k126+]€227 k’li7+k2i8
+k3i9+k4210 +k3@1 M ZVAR +k3@11+k4i12

Output

[figure from Andrej Karpathy]

Prior knowledge

e Local connectivity: each hidden unit operates on a local image patch (3 instead of 7
connections per hidden unit)

e Parameter sharing: processing of each image patch is same (3 parameters instead of 3-5)

e Intuition: try to match a pattern in image

Convolutional layers

Input Layer 1 Layer n
Image

In General

e Instead of vector to vector, we do volume to volume

[figure from Andrej Karpathy]

Max-pooling

Single depth slice

" 11112 | 4
max pool with 2x2 filters
S| 6|7 |8 and stride 2
3 | 2
1 | 2
y

e Intuition: test if there exists a pattern in neighborhood

e Reduce computation, prevent overfitting

Example of function evaluation

RELU RELU

RELU RELU

-’
=l
L
[+
-
-
L
o

>
Z
O
&)

CONV

l

CONV

I+QEEEJ§E

. 3_.: ,: ;
— VP RN

WEm

R

[Krizhevsky et al., 2012]

AlexNet

ol ,.f i [i i .
B T, 182 128 2048 Zoag \dense
N ﬁ%fﬁh \\ 13 \\ \Qa
=N _I."' 1____‘:_.__:y -.____._. .

113 T s dense | [dense

1000

192 192 128 Max

Max 128 Max pocling
pooling pooling

2048 2048

48

e Non-linearity: use RelU (max(z,0)) instead of logistic

e Data augmentation: translate, horizontal reflection, vary intensity, dropout (guard against
overfitting)

e Computation: parallelize across two GPUs (6 days)

e Results on ImageNet: 16.4% error (next best was 25.8%)

[Simoyan/Zisserman, 2014] [image credit: Davi Frossard]

VGGNet

LA A T TR i e i

112 %112 128

5G|x 56 x 256
; 28 % 28 % 512 TxTx5l2

;_I laxlexpls L 1214096 11 % 1000

B convolution+RelLT

r {1 max pooling

fully connected+4+HeL L

| softmax

e Architecture: deeper but smaller filters; uniform
e Computation: 4 GPUs for 2-3 weeks
e Results on ImageNet: 7.3% error (AlexNet: 16.4%)

[He et al. 2015]

Residual networks

weight layer

F(x) lrelu

weight layer

e Key idea: make it easy to learn the iden-
tity (good inductive bias)
e Enables training 152 layer networks

e Results on ImageNet: 3.6% error

X
identity

|\ N

Summary

Key idea: locality of connections, capture spatial structure
Filters have parameter sharing; most parameters in last fully connected layers
Depth really matters

Applications to text, Go, drug design, etc.

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Motivation: modeling sequences

Sentences:
L1 L2 L3 L4q Ly L6 L7 Iy L9 T10 T11 L12
Paris Talks Set Stage for Action as Risks to the Climate Rise

Time series:

Recurrent neural networks

Formula S = fw(8i_1, ;)

Network SA)5

Computation eeo
Graph

Recurrent neural networks

Py
—_

ho

>
w

ha

— 000000
000000

|

— ~000000
5 - 000000

&
—

&
w

I
N

h1 = Encode(zq)
o ~ Decode(h;) Update context vector:

ho = Encode(hq, x2) hy = Encode(hi—1, 2+)

]’Lg = Encode hQ,CEg) Tt+1 = DeCOde(ht)

x4 ~ Decode(hs) context h; compresses 1, ..

. Lt

(
(
(.
z3 ~ Decode(hs) Predict next character:
(
(
(

hs = Encode(hs, x4)

[Elman, 1990]

Simple recurrent network

HKH
NN
Ve

gL} ¥

p(Tiy1)

Decode(h;) ~ softmax(E) =

Vanishing gradient problem

Short Ae‘oen dancy |onJ dcfendomcy

e RNNs can have long or short dependancies

e When there are long dependancies, gradients have trouble backpropagating through

Vanishing gradient problem

- E*-\ Et
Oy -2 éo*-\ O‘l‘
\' \Y
sHW ,ij-;/ “
Xy-2 téjxf-l U X+
oE; i OFE; Do, 08; 0sy,

Chain rule => multiplications ~ 9W <= 0o, Js; 95, OW
Can explode or shrink! Jsi _ : 0s;

[Schmidhuber & Hochreiter, 1997]

Long Short Term Memory (LSTM)

API:
(ht, Ct) — I—STM(ht—la Ct—1, $t)

Input gate:
iv = o(Wixy + Uihy—1 + Vicg—1 + by)
Forget gate (initialize with b large, so close to 1):
fr = U(Wf$t + Ufht_1 + Vecr—1 + bf)
Cell: additive combination of RNN update with previous cell
ce = 1y © tanh(Wexy + Uchi—1 +be) + ft © ci—1
Output gate:
0 = 0c(Woxy + Upshi—1 + Vocr + by)
Hidden state: Compared with RNN, LSTM can handle the
hy = 0; ® tanh(c;) information in memory for the long period of

time---remembering information for long
period of time.

[Sutskever et al., 2014]

Sequence-to-sequence model

Motivation: machine translation

x:Je crains 'homme de un seul livre.

y: Fear the man of one book.

Y4 Ys Ye

AN

o o 3 B \E O\ Sequence-to-sequence models
o »8 »8 »8 »8 »8 are not a type of neural

o o o S ° ° network (like RNN or LSTM),
@ o o @ @ @ but rather a framework for

T T T ha hs hg solving sequence transduction
T X9 @3 problems by using RNN or

LSTM.

Read in a sentence first, output according to RNN:

hy = Encode(h;_1,x¢ or y_1), y: = Decode(hy)

Attention-based models

Motivation: long sentences — compress to finite dimensional vector?

Eine Folge von Ereignissen bewirkte, dass aus Beethovens Studienreise nach Wien ein dauer-
hafter und endgiiltiger Aufenthalt wurde. Kurz nach Beethovens Ankunft, am 18. Dezem- ‘
ber 1792, starb sein Vater. 1794 besetzten franzosische Truppen das Rheinland, und der

kurfiirstliche Hof musste fliehen.

—“Q’ Key idea: attention

Learn to look back at your notes.

000000

[Bahdanau et al., 2015]

Attention-based models

Y4 Ys Ye
h1 ho hs I I I
0] O] 3 O O O
© © © o © @
o ol el .o o .
© @ @ @ © @
© © © @ © @
@ © 0 @ @ &
Pl o
1 o I3

Distribution over input positions:

a; = softmax([Attend(hy, hi—1), ..., Attend(hr, hi—1)])
The Transformer model:
1. An encoder-decoder model

hy = Encode(hy_1,ys_1,> . ah; 2. Uses self-attention
t (i1, Y1 2‘7 —1 athy) 3. Parallel processing (Not sequential)

Transformer models: attention only — no RNN! 4. The "T" in ChatGPT

Generate with attended input:

[Bahdanau et al., 2015]

Machine translation

=
T c U
= o E -
@ a © b5 W A
@ O €S m e = 2
25 . ¢258¢85_393 o
| [
EF m oS Luwu< =B E T4 v
LI
accord
sSur
la
zone
économique
européenne
a

été
signé
en
aolt
1992

<end>

[Xu et al., 2015]

Image captioning

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor.

A little girl sitting on a bed with
a teddy bear. in the water.

Zo
Ny 2

Summary

e Recurrent neural networks: model sequences (non-linear version of Kalman filter or HMM)
e Logic intuition: learning a program with a for loop (reduce)

e LSTMs mitigate the vanishing gradient problem

e Attention-based models: when only part of input is relevant at a time

e Newer models with "external memory”: memory networks, neural Turing machines

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Motivation

e Deep neural networks require lot of data

e Sometimes not very much labeled data, but plenty of unlabeled data (text, images, videos)

e Humans rarely get direct supervision; can learn from raw sensory information?

Autoencoders

Analogy:
AAAABBBBB=»4A's b Bs=—AAAABBBBB

—“@' Key idea: autoencoders

If we can compress a data point and still reconstruct it, then we have learned something
generally useful.

General framework:
h

Encode Decode =

minimize ||z — Z||?

IOOO‘OOOI 8
00000 %

Principal component analysis

Input: points z1,...,Z,
aj 2 U o
U' & h

O
Encode(x :-Q Decode(h) = I
Rl () =SSk

(assume x;'s are mean zero and U is orthogonal)

PCA objective:

n

minimize Z |z; — Decode(Encode(x;))]|?

1=1

Autoencoders

Increase dimensionality of hidden dimension:

Encode = Decode =i

IOOO‘OOOI =
IOOO‘OOOI Ny
000000 %

e Problem: learning nothing — just set Encode, Decode to identity function!

e Need to control complexity of Encode and Decode somehow...

Non-linear autoencoders

Non-linear transformation (e.g., logistic function):

14 S

D}/ Encode(x) = o(Wx + b)
/ Decode(h) = o(W'h + V')

— W' b’
W b
EE &

minimize ||z — Decode(Encode(x))

| oss function:

|*

Key: non-linearity makes life harder, prevents degeneracy

Denoising autoencoders

Corrupt(x)
o h

—p- Fncode —> Decode =

0000049 %

000000

Types of noise:
e Blankout: Corrupt([1,2,3,4]) =10, 2,3, 0]
1.1,1.9,3.3,4.2)

e Gaussian: Corrupt(|[1,2,3,4])
Objective:
minimize ||z — Decode(Encode(Corrupt(x)))||?
Algorithm: pick example, add fresh noise, SGD update

Key: noise makes life harder, prevents degeneracy

[Figure 7 of Vincent et al. (2010)]

Denoising autoencoders

MNIST: 60,000 images of digits (784 dimensions)

0 — 09 om0 N Jr oF
.D....lﬂ.*.__,...ru“n...r.._._-.ﬁ_ .w._lnr.ﬂ.u
T I ol IR Rl 7 VI
)= M =N e o
RN TRl T ¥ R P
O~ TWD ke o
Q—cs T B M~ o
O =03 T low -0 o
3 v A A T VNS o
D=0 Mmoo 2D e O
)~ X o T Wil penn G
O e (o™ I N8 S 9
QO -l ind hoa o
D=0l is o s
S — ((Fm A S e O
0 —~d 0T ND e e
D — - o N T
O o T S o O
O ~{ e M~

O~ d) Thp O Oy &

200 learned filters (rows of W):

(1 2 Y S 2 i A
I) [N N S
ENENSNEE NS
ENNNAMTNES
RENERCSREEN
HRENNSEENN
ERENERYESN
) N9 1 o Y e R P
I IS) 0 I S
Y 1 Y N

|44

labeled

Unsupervised pre-training

unlabeled

[Devlin+ 2018]

BERT

(Bidirectional Encoder Representations from Transformers, Google 2018)

Paris Talks ___ Stage for _____ as Risks to ___ C(limate Rise

Paris Talks Set Stage for Action as Risks to the Climate Rise

e Tasks: fill in words, predict whether is next sentence

e Trained on 3.3B words, 4 days on 64 TPUs

Rank

Oct 03, 2018

Oct 05, 2018

Sep 26, 2018

3
Jul 11, 2018

4
Jul 08, 2018

5
Mar 19, 2018

Model

Human Performance
Stanford University
(Rajpurkar et al. '14)

BERT (ensemble)
Google Al

BERT (single model)
Google Al

ninet (ensemble)
Microsoft Research Asia

ninet (ensemble)
Microsoft Research Asia

QAMNet (ensemble)
Google Brain & CMU

r-net ([ensemble)
Microsoft Research Asia

QAMNet (ensemble)
Google Brain & CMU

nlnet (single model)
Microsoft Research Asia

MARS (ensemble)

YUANFUDAC research MLF

MARS (single model)

YUANFUDAQO research MLP

EM

82.304

87.433

85.083

85.356

85.954

84.454

84.003

83.877

83.468

83.982

83.185

F1

291.221

93.160

91.835

291.202

91.677

20.420

20.147

89.737

20.133

89.796

89.547

7
o

Unsupervised learning

Vg

e Principle: make up prediction tasks (e.g., x given x or context)
e Hard task — pressure to learn something

e Loss minimzation using SGD

e Discriminatively fine tune: initialize feedforward neural network and backpropagate to
optimize task accuracy

e How far can one push this?

Roadmap

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Unsupervised learning

Final remarks

Getting things to work

Better optimization algorithms: SGD, SGD+momentum, AdaGrad, AdaDelta, momentum,
Nesterov, Adam

Tricks: initialization, gradient clipping, batch normalization, dropout

More hyperparameter tuning: step sizes, architectures

Better hardware: GPUs, TPUs

m

CPU GPU
MULTIPLE CORES THOUSAMDS OF CORES

...wait for a long time...

Theory: why does it work?

Two questions:

e Approximation: why are neural networks good hypothesis classes?

e Optimization: why can SGD optimize a high-dimensional non-convex problem?

Partial answers:

e 1-layer neural networks can approximate any continuous function on compact set [Cy-
benko, 1989; Barron, 1993]

e Generate random features works too [Rahimi/Recht, 2009; Andoni et. al, 2014]

e Use statistical physics to analyze loss surfaces [Choromanska et al., 2014]

|\ N

Phenomena
Fixed vectors
Spatial structure

Sequence

Sequence-to-sequence

Unsupervised

Summary

|deas
Feedforward NNs
convolutional NNs

recurrent NNs
LSTMs

encoder-decoder
attention-based models

autoencoders
any auxiliary task

Outlook

Extensibility: able to compose modules

LSTM Attend Encode

Learning programs: think about analogy with a computer

We cannot simply depend on GPU and data to achieve AGI.
New science and technology are needed.

	deep-learning
	CAI_lecture_DL_applications

